Modification of Source Strength in Low-Dose-Rate Lung Brachytherapy with 125I and 103Pd seeds

H Rezaei, H Mostaghimi, A R Mehdizadeh


Background: A new treatment approach for most patients who have undergone early stage non-small-cell lung carcinoma (NSCLC), is wedge resection plus permanent implant brachytherapy. However, the specification of dose to medium at low energies especially in heterogeneous lung is unclear yet.

Objective: The present study aims to modify source strength for different configurations of 125I and 103Pd seeds used in lung permanent implant brachytherapy.

Methods: Different arrays of 125I and 103Pd seeds were simulated by MCNPX code in protocol-based water vs. actual 3D lung environments. Absorbed dose was, then, scored in both mediums. Dose differences between both environments were calculated and source strength was modified for the prescription point. In addition, lung-to-water absorbed dose ratio was obtained and presented by precise equations.

Results: Due to significant differences in prescription dose, source strength was modified 16%-19% and 37%-43% for different configurations of 125I and 103Pd seeds, respectively. In addition, depth-dependent dose differences were observed between the actual lung and protocol-based water mediums (dose difference as a function of depth).

Conclusion: Modification of source strength is essential for different arrangements of 125I and 103Pd seeds in lung implantation. Modified source strength and presented equations are recommended to be considered in future studies based on lung brachytherapy.


125I seed, 103Pd seed, lung permanent implant brachytherapy, Monte Carlo method

Full Text:



eISSN: 2251-7200        JBPE NLM ID: 101589641

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

Indexing:  PubMed Central, Scopus, EMBASE, EBSCO, DOAJIndex CopernicusISCSIDGoogle scholar, Open J-Gate, Geneva Free Medical Journals, EMRmedexBarakatkns, Magiran, HINARI, Electronic Journals Library