Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

S Navaei Lavasani, A Mostaar, M Ashtiyani


Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.

Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as wavelet-based features, both extracted from pixel-based time-signal intensity curves to segment prostate lesions on prostate DCE-MRI.

Methods: Quantitative dynamic contrast-enhanced MRI data were acquired on 22 patients. Optimal features selected by forward selection are used for the segmentation of prostate lesions by applying fuzzy c-means (FCM) clustering. The images were reviewed by an expert radiologist and manual segmentation performed as the ground truth.

Results: Empirical results indicate that fuzzy c-mean classifier can achieve better results in terms of sensitivity, specificity when semi-quantitative features were considered versus wavelet kinetic features for lesion segmentation (Sensitivity of 87.58% and 75.62%, respectively) and (Specificity of 89.85% and 68.89 %, respectively).

Conclusion: The proposed segmentation algorithm in this work can potentially be implemented for automatic prostate lesion detection in a computer aided diagnosis scheme and combined with morphologic features to increase diagnostic credibility


DCE-MRI, Prostate Cancer, Semi-quantitative Feature, Wavelet Kinetic Feature, Segmentation

Full Text:



eISSN: 2251-7200        JBPE NLM ID: 101589641

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

Indexing:  PubMed Central, Scopus, EMBASE, EBSCO, DOAJIndex CopernicusISCSIDGoogle scholar, Open J-Gate, Geneva Free Medical Journals, EMRmedexBarakatkns, Magiran, HINARI, Electronic Journals Library