Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

H Khastavaneh, H Ebrahimpour-Komleh


Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation is a need.

Materials and Methods: In order to segment MS lesions, a method based on learning kernels has been proposed. The proposed method has three main steps namely; pre-processing, sub-region extraction and segmentation. The segmentation is performed by a kernel. This kernel is trained using a modified version of a special type of Artificial Neural Networks (ANN) called Massive Training ANN (MTANN). The kernel incorporates surrounding pixel information as features for classification of middle pixel of kernel. The materials of this study include a part of MICCAI 2008 MS lesion segmentation grand challenge data-set.

Results: Both qualitative and quantitative results show promising results. Similarity index of 70 percent in some cases is considered convincing. These results are obtained from information of only one MRI channel rather than multi-channel MRIs. 

Conclusion: This study shows the potential of surrounding pixel information to be incorporated in segmentation by learning kernels. The performance of proposed method will be improved using a special pre-processing pipeline and also a post-processing step for reducing false positives/negatives. An important advantage of proposed model is that it uses just FLAIR MRI that reduces computational time and brings comfort to patients.


Full Text:


eISSN: 2251-7200        JBPE NLM ID: 101589641

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

Indexing:  PubMed Central, Scopus, EMBASE, EBSCO, DOAJIndex CopernicusISCSIDGoogle scholar, Open J-Gate, Geneva Free Medical Journals, EMRmedexBarakatkns, Magiran, HINARI, Electronic Journals Library